Extensions 1→N→G→Q→1 with N=C32.A4 and Q=C3

Direct product G=N×Q with N=C32.A4 and Q=C3
dρLabelID
C3×C32.A454C3xC3^2.A4324,134

Semidirect products G=N:Q with N=C32.A4 and Q=C3
extensionφ:Q→Out NdρLabelID
C32.A41C3 = C62.13C32φ: C3/C1C3 ⊆ Out C32.A4543C3^2.A4:1C3324,49
C32.A42C3 = He3.A4φ: C3/C1C3 ⊆ Out C32.A4549C3^2.A4:2C3324,53
C32.A43C3 = He32A4φ: C3/C1C3 ⊆ Out C32.A4369C3^2.A4:3C3324,55
C32.A44C3 = 3- 1+2⋊A4φ: C3/C1C3 ⊆ Out C32.A4549C3^2.A4:4C3324,57
C32.A45C3 = C62.6C32φ: C3/C1C3 ⊆ Out C32.A4369C3^2.A4:5C3324,58
C32.A46C3 = C332A4φ: C3/C1C3 ⊆ Out C32.A4183C3^2.A4:6C3324,60
C32.A47C3 = He3.2A4φ: C3/C1C3 ⊆ Out C32.A4549C3^2.A4:7C3324,129
C32.A48C3 = A4×3- 1+2φ: C3/C1C3 ⊆ Out C32.A4369C3^2.A4:8C3324,131
C32.A49C3 = C62.9C32φ: C3/C1C3 ⊆ Out C32.A4549C3^2.A4:9C3324,132
C32.A410C3 = C62.25C32φ: trivial image543C3^2.A4:10C3324,128

Non-split extensions G=N.Q with N=C32.A4 and Q=C3
extensionφ:Q→Out NdρLabelID
C32.A4.1C3 = C62.15C32φ: C3/C1C3 ⊆ Out C32.A4543C3^2.A4.1C3324,51
C32.A4.2C3 = C62.C32φ: C3/C1C3 ⊆ Out C32.A4549C3^2.A4.2C3324,56

׿
×
𝔽